7. Three-Sided Dice 4. Unsinkable Disk

Hynek Němec

Dept. of Dielectrics Institute of Physics of the Czech Academy of Sciences ©

7. Three-Sided Dice

To land a coin on its side is often associated with the idea of a rare occurrence. What should be the physical and geometrical characteristics of a cylindrical dice so that it has the same probability to land on its side and one of its faces?

History

Rebounding Capsule ($34^{\text {th }}$ IYPT)

A spherical ball dropped onto a hard surface will never rebound to the release height, even if it has an initial spin. A capsule-shaped object (i.e. Tic Tac mint) on the other hand may exceed the initial height. Investigate this phenomenon.

Probability (19 ${ }^{\text {th }}$ IYPT)

A coin is held above a horizontal surface. What initial conditions will ensure equal probability of heads and tails when the coin is dropped and has come to rest?

Coin (10 ${ }^{\text {th }}$ IYPT)
From what height must a coin with heads up be dropped, so that the probability of landing with heads or tails up is equal?

Simple cases

Thin disk

Thin rod

Probability of landing on any face
Probability of landing on any face

Simple cases

Thin disk

Thin rod

Probability of landing on any face 100\%

Probability of landing on any face 0\%

Simple cases

Thin disk

Thin rod

Probability of landing on any face 100\%

Probability of landing on any face 0\%
Really always?
Background photo by Pixabay.com

Simple cases

Thin disk

Thin rod

Probability of landing on any face
Probability of landing on any face

Simple cases

Probability of landing on any face
Probability of landing on any face

Simple cases

Probability of landing on any face
< $\mathbf{1 0 0 \%}$

Probability of landing on any face >0\%

- Geometry ("the dice")

- Target surface ("where the dice falls")

- Initial conditions ("how the dice is thrown")

often associated with the idea of a rare occurrence. What should be the physical and geometrical characteristics of a cylindrical dice so that it has the same probability to land on its side and one of its faces?
- Initial conditions for rigid body motion $\rightarrow 12$ parameters
- Position
- Rotation
- Velocity
- Rotation speed

- Reduction due to symmetry
- Symmetrical cylinder in free space $\rightarrow 6$ parameters "only" (height, lateral velocity and fall velocity, tilt, tilt speed and rotation speed along the axis)
- Cylinder with offset center of gravity $\rightarrow 8$ parameters

Important parameters - target surface

- Target surface, dice-surface interaction
- Coefficient of restitution
- Coefficient of friction
- Shape of the surface
- Simplifications
- No friction/Infinite friction
- Coefficient of restitution $\rightarrow 0$ (e.g. landing in flour)
- Literature: W. Goldsmith, Impact. London, Arnold (1960)

Important parameters - geometry

- Aspect ratio
- Controls the stability

- Mass distribution
- Controls the ratio of translation and rotation energy

Important parameters - geometry

- Aspect ratio
- Controls the stability
- Mass distribution
- Controls the ratio of translation and rotation energy

When are important the following parameters?

- Size
- Density of material
- (Airflow)

Important parameters - geometry

- Aspect ratio
- Controls the stability
- Mass distribution
- Controls the ratio of translation and rotation energy

When are important the following parameters?

- Size
- Density of material
- (Airflow)

Force $\not \subset<$ mass
Large speeds and/or heights

Deterministic approach

- Initial conditions + dice geometry and physical parameters
- Dynamics of rigid body (gyroscope equation)
- 1D: Newton's equations of translation and rotation motion
- Impact to the surface

Example: calculated diagram showing the terminal state of a 5 CZK coin on a classroom table.

White $=$ same orientation
Black $=$ opposite orientation
[In: Nápaditá fyzika, 1. vydání, ARSCII, Praha (2000), pp. 53 -62]

Deterministic approach

- Issue: Control/characterization of initial conditions
- Typically a distribution

Initial angular velocity of the tilt (rad/s)

Motion of the 5 CZK dropped by an electromagnet

- Suitable distribution of initial conditions, e.g.
- Initial height around 1.20 m
- Shaking of dice assuring (quasi-)random distribution of initial tilts and a distribution of velocities
- The dice has some kinetic energy before the impact. Assess whether it may change the state upon collision
- Examples
- Kinetic energy in the form of rotation along the main axis
- Kinetic energy in the form of tilting
- Vary the dice shape to test your hypothesis

Statistics

If the probability p of an event (e.g. cylinder landing face up) remains constant, then the probability $P_{n}(k)$ that the event occurs exactly k-times out of n cases follows binomial distribution

$$
P_{n}(k)=\binom{n}{k} p^{k}(1-p)^{n-k} \equiv \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
$$

Statistics

If the probability p of an event (e.g. cylinder landing face up) remains constant, then the probability $P_{n}(k)$ that the event occurs exactly k-times out of n cases follows binomial distribution

$$
P_{n}(k)=\binom{n}{k} p^{k}(1-p)^{n-k} \equiv \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
$$

Statistics

If the probability p of an event (e.g. cylinder landing face up) remains constant, then the probability $P_{n}(k)$ that the event occurs exactly k-times out of n cases follows binomial distribution

$$
P_{n}(k)=\binom{n}{k} p^{k}(1-p)^{n-k} \equiv \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
$$

Statistics

If the probability p of an event (e.g. cylinder landing face up) remains constant, then the probability $P_{n}(k)$ that the event occurs exactly k-times out of n cases follows binomial distribution

$$
P_{n}(k)=\binom{n}{k} p^{k}(1-p)^{n-k} \equiv \frac{n!}{k!(n-k)!} p^{k}(1-p)^{n-k}
$$

Important characteristics

$$
\frac{\text { Mean value }}{n}=p
$$

$\frac{\text { Standard deviation }}{n}=\sqrt{\frac{p(1-p)}{n}}$

Statistics

The phenomenon happens with probability p.
What frequency shall we measure?

$\boldsymbol{n} \backslash \boldsymbol{p}$	$\mathbf{1 \%}$	$\mathbf{3 \%}$	$\mathbf{1 0 \%}$	$\mathbf{3 3 . 3} \%$
$\mathbf{1 0}$	1 ± 3	3 ± 6	10 ± 9	33 ± 15
$\mathbf{3 0}$	1.0 ± 1.8	3 ± 3	10 ± 5	33 ± 9
$\mathbf{1 0 0}$	1.0 ± 1.0	3.0 ± 1.8	10 ± 3	33 ± 5
$\mathbf{3 0 0}$	1.0 ± 0.6	3.0 ± 1.0	10.0 ± 1.7	33.3 ± 3
$\mathbf{1 0 0 0}$	1.0 ± 0.3	3.0 ± 0.6	10.0 ± 0.9	33.3 ± 1.5
$\mathbf{3 0 0 0}$	1.00 ± 0.18	3.0 ± 0.3	10.0 ± 0.5	33.3 ± 0.9
$\mathbf{1 0} \mathbf{0 0 0}$	1.00 ± 0.10	3.00 ± 0.18	10.0 ± 0.3	33.3 ± 0.5

Statistics

The phenomenon happens with probability p.
What frequency shall we measure?

$\boldsymbol{n} \backslash \boldsymbol{p}$	$\mathbf{1 \%}$	$\mathbf{3 \%}$	$\mathbf{1 0 \%}$	$\mathbf{3 3 . 3} \%$
$\mathbf{1 0}$	1 ± 3	3 ± 6	10 ± 9	33 ± 15
$\mathbf{3 0}$	1.0 ± 1.8	3 ± 3	10 ± 5	33 ± 9
$\mathbf{1 0 0}$	1.0 ± 1.0	3.0 ± 1.8	10 ± 3	33 ± 5
$\mathbf{3 0 0}$	1.0 ± 0.6	3.0 ± 1.0	10.0 ± 1.7	33.3 ± 3
$\mathbf{1 0 0 0}$	1.0 ± 0.3	3.0 ± 0.6	10.0 ± 0.9	33.3 ± 1.5
$\mathbf{3 0 0 0}$	1.00 ± 0.18	3.0 ± 0.3	10.0 ± 0.5	33.3 ± 0.9
$\mathbf{1 0} \mathbf{0 0 0}$	1.00 ± 0.10	3.00 ± 0.18	10.0 ± 0.3	33.3 ± 0.5

Fundamental questions

- How many times should we throw the dice?
- How long this will take?
- When shall we become tired?

Statistics

The phenomenon happens with probability p.
What frequency shall we measure?

$\boldsymbol{n} \backslash \boldsymbol{p}$	$\mathbf{1 \%}$	$\mathbf{3 \%}$	$\mathbf{1 0} \%$	$\mathbf{3 3 . 3 \%}$
$\mathbf{1 0}$	1 ± 3	3 ± 6	10 ± 9	33 ± 15
$\mathbf{3 0}$	1.0 ± 1.8	3 ± 3	10 ± 5	33 ± 9
$\mathbf{1 0 0}$	1.0 ± 1.0	3.0 ± 1.8	10 ± 3	33 ± 5
$\mathbf{3 0 0}$	1.0 ± 0.6	3.0 ± 1.0	10.0 ± 1.7	33.3 ± 3
$\mathbf{1 0 0 0}$	1.0 ± 0.3	3.0 ± 0.6	10.0 ± 0.9	33.3 ± 1.5
$\mathbf{3 0 0 0}$	1.00 ± 0.18	3.0 ± 0.3	10.0 ± 0.5	33.3 ± 0.9
$\mathbf{1 0 0 0 0}$	1.00 ± 0.10	3.00 ± 0.18	10.0 ± 0.3	33.3 ± 0.5

However

 (σ denotes the standard deviation)The result fits within $\pm \sigma$ with 68% probability
The result fits within $\pm 2 \sigma$ with 95% probability
The result fits within $\pm 3 \sigma$ with 99.7% probability

Statistics

The phenomenon happens with probability p.
What frequency shall we measure?

$\boldsymbol{n} \backslash \boldsymbol{p}$	$\mathbf{1 \%}$	$\mathbf{3 \%}$	$\mathbf{1 0 \%}$	$\mathbf{3 3 . 3} \%$
$\mathbf{1 0}$	1 ± 3	3 ± 6	10 ± 9	33 ± 15
$\mathbf{3 0}$	1.0 ± 1.8	3 ± 3	10 ± 5	33 ± 9
$\mathbf{1 0 0}$	1.0 ± 1.0	3.0 ± 1.8	10 ± 3	33 ± 5
$\mathbf{3 0 0}$	1.0 ± 0.6	3.0 ± 1.0	10.0 ± 1.7	33.3 ± 3
$\mathbf{1 0 0 0}$	1.0 ± 0.3	3.0 ± 0.6	10.0 ± 0.9	33.3 ± 1.5
$\mathbf{3 0 0 0}$	1.00 ± 0.18	3.0 ± 0.3	10.0 ± 0.5	33.3 ± 0.9
$\mathbf{1 0} \mathbf{0 0 0}$	1.00 ± 0.10	3.00 ± 0.18	10.0 ± 0.3	33.3 ± 0.5

Balance between accuracy and time: Accuracy $\propto \sqrt{\text { time }}$

- Calculate the probability of the results for a dice in contact with the surface (consider that the orientations are random) as a function of the aspect ratio
- Perform many experiments under selected conditions. Observe whether the results agree with the simple picture:
- Yes? \Rightarrow Explain why the complex dynamics leads to so simple observation!
- No? \Rightarrow Explain the difference: any deviation from the simple view is interesting!

Win-win situation!

- Select a parameter which you vary. Ensure that the other remain as intact as possible!

Conclusions (Three-Sided Dice)

- Important parameters
- Dice
- Aspect ratio, mass distribution
- Dice-surface interaction
- Coefficient of restitution and friction
- Surface
- Shape
- Initial conditions
- Random or deterministic
- Approaches
- Deterministic or stochastic
- Statistics
- Doing < 100 realizations makes little sense

4. Unsinkable Disk

A metal disk with a hole at its centre sinks in a container filled with water. When a vertical water jet hits the centre of the disc, it may float on the water surface. Explain this phenomenon and investigate the relevant parameters.

Open-channel flow

Energy of a flow with velocity v in a open channel with depth y

$$
\frac{E}{\varrho g}=y+\frac{v^{2}}{2 g}
$$

Let's assume a constant flow rate $Q(\propto v \cdot y \Longleftarrow$ mass conservation)

Open-channel flow

Energy of a flow

Critical depth y_{k} : transition between tranquil and rapid flow

Open-channel flow

Energy of a flow

Froude number (dimensionless number in fluid dynamics)

$$
\mathrm{Fr}=\frac{v}{\sqrt{g y}}=\frac{\text { flow inertia }}{\text { gravity }}
$$

Graph by Danym50, CC BY-SA 4.0 https://creativecommons.org/licenses/by-sa/4.0, via Wikimedia Commons

Open-channel flow

Tranquil-rapid flow transition \rightarrow instability \rightarrow hydraulic jump

Tranquil-rapid flow transition \rightarrow instability \rightarrow hydraulic jump

Buoyancy

Archimedes law

Buoyancy

Archimedes law

Stabilization

Restoring force

Stabilization

Restoring force

Stabilization

Optimal position

Conclusions (Unsinkable Disk)

- Hydraulic jump
- Expels water from the space above the disc
- Buoyancy force
- Pushes the disc up
- Restoring force
- Prevents the disc from escaping

Conclusions (Unsinkable Disk)

- Hydraulic jump
- Expels water from the space above the disc
- Buoyancy force
- Pushes the disc up
- Restoring force
- Prevents the disc from escaping

