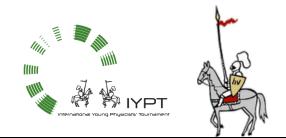
7. Three-Sided Dice4. Unsinkable Disk

Hynek Němec

Dept. of Dielectrics Institute of Physics of the Czech Academy of Sciences

Co-funded by the Erasmus+ Programme of the European Union



7. Three-Sided Dice

To land a coin on its side is often associated with the idea of a rare occurrence. What should be the physical and geometrical characteristics of a cylindrical dice so that it has the same probability to land on its side and one of its faces?

Rebounding Capsule (34th IYPT)

A spherical ball dropped onto a hard surface will never rebound to the release height, even if it has an initial spin. A capsule-shaped object (i.e. Tic Tac mint) on the other hand may exceed the initial height. Investigate this phenomenon.

Probability (19th IYPT)

A coin is held above a horizontal surface. What initial conditions will ensure equal probability of heads and tails when the coin is dropped and has come to rest?

Coin (10th IYPT)

From what height must a coin with heads up be dropped, so that the probability of landing with heads or tails up is equal?

Thin disk

Probability of landing on any face

Probability of landing on any face

Background photo by Pixabay.com

Thin disk

Probability of landing on any face 100%

Probability of landing on any face 0%

Background photo by Pixabay.com

Thin disk

Probability of landing on any face 100%

y face Probability of landing on any face 0% Really always?

Background photo by Pixabay.com

Simple cases

Thin disk

Probability of landing on any face

Probability of landing on any face

Background photo by Mudd1

Simple cases

Probability of landing on any face

Probability of landing on any face

Background photo by Mudd1

Simple cases

Probability of landing on any face < 100%

Probability of landing on any face >0%

Background photo by Mudd1

Important parameters

• Geometry ("the dice")

• Target surface ("where the dice falls")

• Initial conditions ("how the dice is thrown")

To land a coin on its side is often associated with the idea of a rare occurrence. What should be the physical and geometrical **characteristics of a cylindrical dice** so that it has the same probability to land on its side and one of its faces?

Important parameters – initial conditions

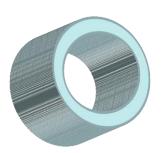
- Initial conditions for rigid body motion $\rightarrow 12$ parameters
 - Position
 - Rotation
 - Velocity
 - Rotation speed
 - Reduction due to symmetry
 - Symmetrical cylinder in free space → 6 parameters "only" (height, lateral velocity and fall velocity, tilt, tilt speed and rotation speed along the axis)
 - Cylinder with offset center of gravity $\rightarrow 8$ parameters

Important parameters – target surface

- Target surface, dice-surface interaction
 - Coefficient of restitution
 - Coefficient of friction
 - Shape of the surface
- Simplifications
 - No friction/Infinite friction
 - Coefficient of restitution $\rightarrow 0$ (e.g. landing in flour)
- Literature: W. Goldsmith, Impact. London, Arnold (1960)

Important parameters – geometry

- Aspect ratio
 - Controls the stability
- Mass distribution
 - Controls the ratio of translation and rotation energy

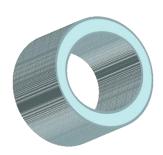


Important parameters – geometry

- Aspect ratio
 - Controls the stability
- Mass distribution
 - Controls the ratio of translation and rotation energy

When are important the following parameters?

- Size
- Density of material
- (Airflow)



Important parameters – geometry

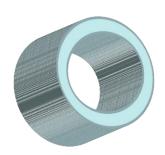
- Aspect ratio
 - Controls the stability
- Mass distribution
 - Controls the ratio of translation and rotation energy

When are important the following parameters?

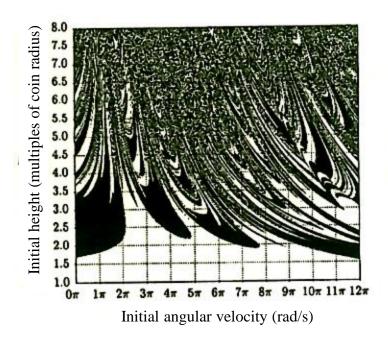
- Size
- Density of material
- (Airflow)

Force ⊄ mass

Large speeds and/or heights



- Initial conditions + dice geometry and physical parameters
- Dynamics of rigid body (gyroscope equation)
 - 1D: Newton's equations of translation and rotation motion
- Impact to the surface

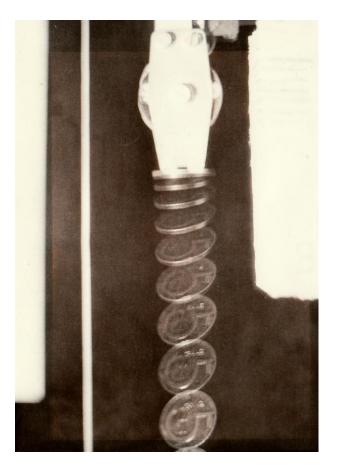


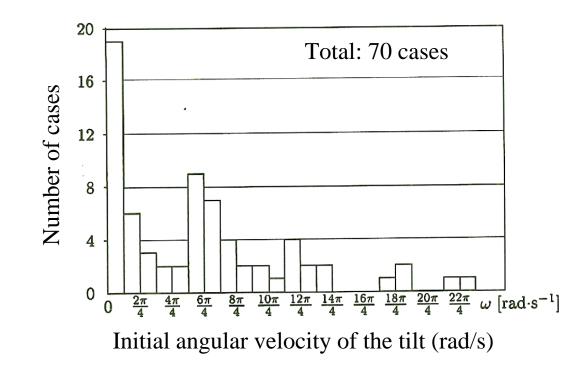
Example: calculated diagram showing the terminal state of a 5 CZK coin on a classroom table.

White = same orientation Black = opposite orientation

[In: Nápaditá fyzika, 1. vydání, ARSCII, Praha (2000), pp. 53 – 62]

- Issue: Control/characterization of initial conditions
 - Typically a distribution



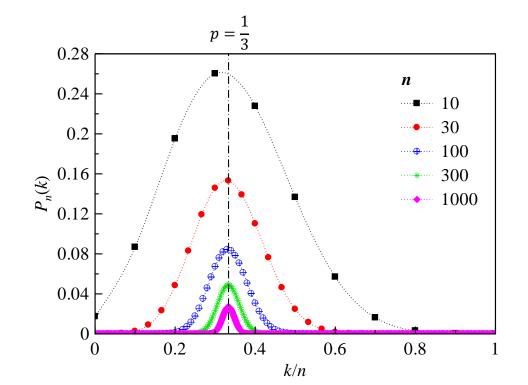


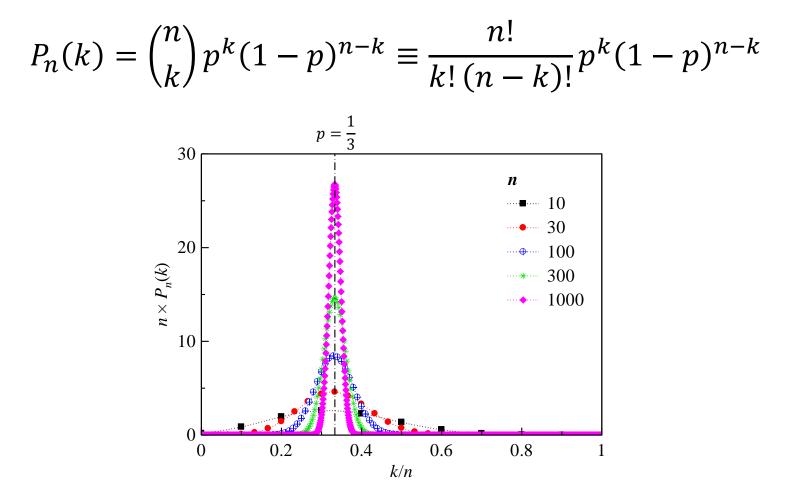
Motion of the 5 CZK dropped by an electromagnet

- Suitable distribution of initial conditions, e.g.
 - Initial height around 1.20 m
 - Shaking of dice assuring (quasi-)random distribution of initial tilts and a distribution of velocities
- The dice has some kinetic energy before the impact. Assess whether it may change the state upon collision
- Examples
 - Kinetic energy in the form of rotation along the main axis
 - Kinetic energy in the form of tilting
- Vary the dice shape to test your hypothesis

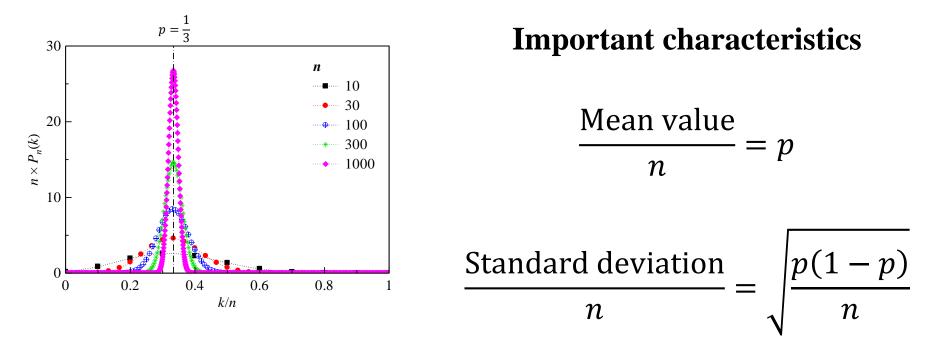
$$P_n(k) = \binom{n}{k} p^k (1-p)^{n-k} \equiv \frac{n!}{k! (n-k)!} p^k (1-p)^{n-k}$$

$$P_n(k) = \binom{n}{k} p^k (1-p)^{n-k} \equiv \frac{n!}{k! (n-k)!} p^k (1-p)^{n-k}$$





$$P_n(k) = \binom{n}{k} p^k (1-p)^{n-k} \equiv \frac{n!}{k! (n-k)!} p^k (1-p)^{n-k}$$



What frequency shall we measure?

$n \setminus p$	1%	3%	10%	33.3%
10	1 ± 3	3 ± 6	10 ± 9	33 ± 15
30	1.0 ± 1.8	3 ± 3	10 ± 5	33 ± 9
100	1.0 ± 1.0	3.0 ± 1.8	10 ± 3	33 ± 5
300	1.0 ± 0.6	3.0 ± 1.0	10.0 ± 1.7	33.3 ± 3
1 000	1.0 ± 0.3	3.0 ± 0.6	10.0 ± 0.9	33.3 ± 1.5
3 000	1.00 ± 0.18	3.0 ± 0.3	10.0 ± 0.5	33.3 ± 0.9
10 000	1.00 ± 0.10	3.00 ± 0.18	10.0 ± 0.3	33.3 ± 0.5

What frequency shall we measure?

$n \setminus p$	1%	3%	10%	33.3%
10	1 ± 3	3 ± 6	10 ± 9	33 ± 15
30	1.0 ± 1.8	3 ± 3	10 ± 5	33 ± 9
100	1.0 ± 1.0	3.0 ± 1.8	10 ± 3	33 ± 5
300	1.0 ± 0.6	3.0 ± 1.0	10.0 ± 1.7	33.3 ± 3
1 000	1.0 ± 0.3	3.0 ± 0.6	10.0 ± 0.9	33.3 ± 1.5
3 000	1.00 ± 0.18	3.0 ± 0.3	10.0 ± 0.5	33.3 ± 0.9
10 000	1.00 ± 0.10	3.00 ± 0.18	10.0 ± 0.3	33.3 ± 0.5

Fundamental questions

- How many times should we throw the dice?
- How long this will take?
- When shall we become tired?

What frequency shall we measure?

$n \setminus p$	1%	3%	10%	33.3%
10	1 ± 3	3 ± 6	10 ± 9	33 ± 15
30	1.0 ± 1.8	3 ± 3	10 ± 5	33 ± 9
100	1.0 ± 1.0	3.0 ± 1.8	10 ± 3	33 ± 5
300	1.0 ± 0.6	3.0 ± 1.0	10.0 ± 1.7	33.3 ± 3
1 000	1.0 ± 0.3	3.0 ± 0.6	10.0 ± 0.9	33.3 ± 1.5
3 000	1.00 ± 0.18	3.0 ± 0.3	10.0 ± 0.5	33.3 ± 0.9
10 000	1.00 ± 0.10	3.00 ± 0.18	10.0 ± 0.3	33.3 ± 0.5

However

(σ denotes the standard deviation)

The result fits within $\pm \sigma$ with 68% probability

The result fits within $\pm 2\sigma$ with 95% probability

The result fits within $\pm 3\sigma$ with 99.7% probability

What frequency shall we measure?

$n \setminus p$	1%	3%	10%	33.3%
10	1 ± 3	3 ± 6	10 ± 9	33 ± 15
30	1.0 ± 1.8	3 ± 3	10 ± 5	33 ± 9
100	1.0 ± 1.0	3.0 ± 1.8	10 ± 3	33 ± 5
300	1.0 ± 0.6	3.0 ± 1.0	10.0 ± 1.7	33.3 ± 3
1 000	1.0 ± 0.3	3.0 ± 0.6	10.0 ± 0.9	33.3 ± 1.5
3 000	1.00 ± 0.18	3.0 ± 0.3	10.0 ± 0.5	33.3 ± 0.9
10 000	1.00 ± 0.10	3.00 ± 0.18	10.0 ± 0.3	33.3 ± 0.5

Balance between accuracy and time: Accuracy $\propto \sqrt{\text{time}}$

- Calculate the probability of the results for a dice in contact with the surface (consider that the orientations are random) as a function of the aspect ratio
- Perform many experiments under selected conditions. Observe whether the results agree with the simple picture:
 - Yes? \Rightarrow Explain why the complex dynamics leads to so simple observation!
 - No? \Rightarrow Explain the difference: any deviation from the simple view is interesting!

Win-win situation!

• Select a parameter which you vary. Ensure that the other remain as intact as possible!

Conclusions (Three-Sided Dice)

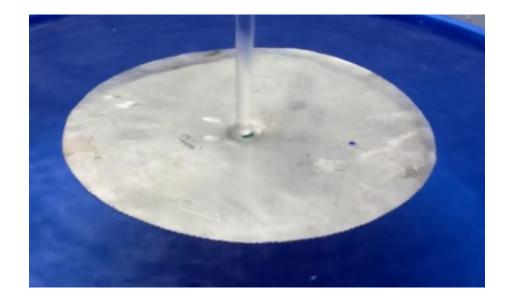
- Important parameters
 - Dice
 - Aspect ratio, mass distribution
 - Dice-surface interaction
 - Coefficient of restitution and friction
 - Surface
 - Shape
 - Initial conditions
 - Random or deterministic
- Approaches
 - Deterministic or stochastic
- Statistics
 - Doing < 100 realizations makes little sense

FACEN

FACE2 STDE 111 1111

4. Unsinkable Disk

A metal disk with a hole at its centre sinks in a container filled with water. When a vertical water jet hits the centre of the disc, it may float on the water surface. Explain this phenomenon and investigate the relevant parameters.

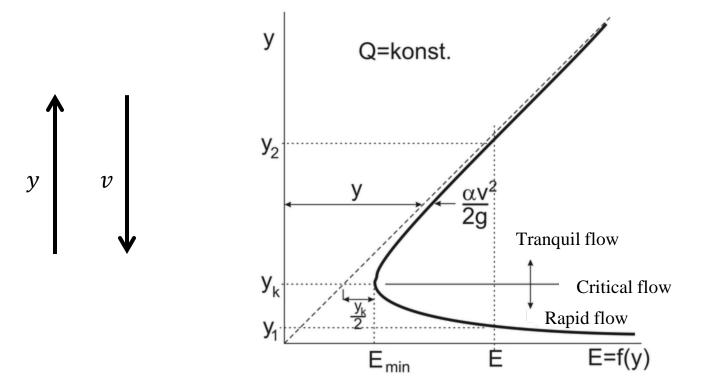


Open-channel flow

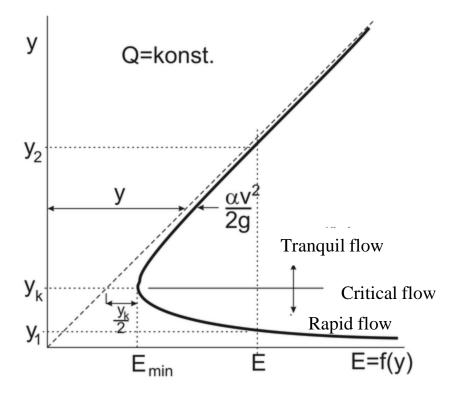
Energy of a flow with velocity v in a open channel with depth y

$$\frac{E}{\varrho g} = y + \frac{v^2}{2g}$$

Let's assume a constant flow rate $Q (\propto v \cdot y \Leftarrow \text{mass conservation})$

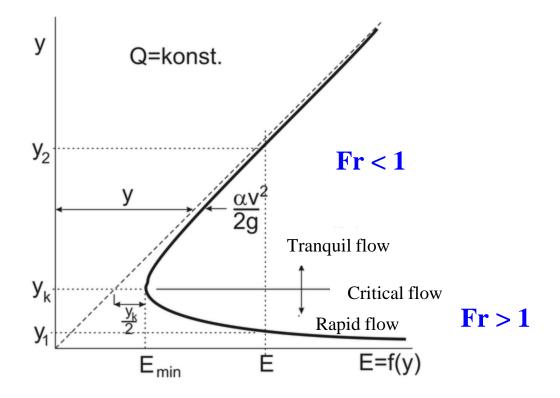


Energy of a flow



Critical depth y_k : transition between tranquil and rapid flow

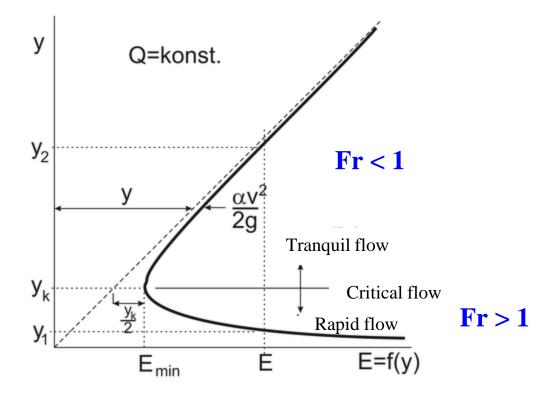
Energy of a flow



Froude number (dimensionless number in fluid dynamics)

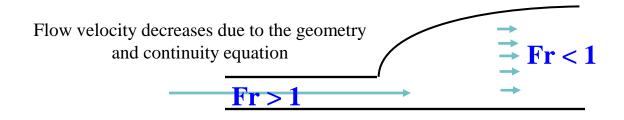
$$Fr = \frac{v}{\sqrt{gy}} = \frac{flow inertia}{gravity}$$

Tranquil-rapid flow transition \rightarrow instability \rightarrow <u>hydraulic jump</u>



Hydraulic jump

Tranquil-rapid flow transition \rightarrow instability \rightarrow <u>hydraulic jump</u>

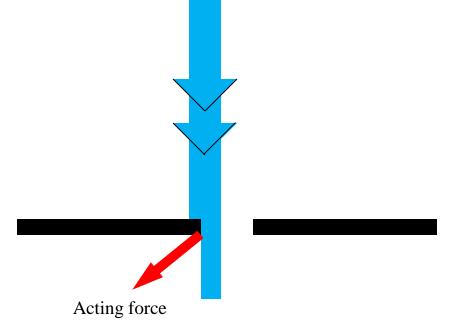


Archimedes law

Archimedes law

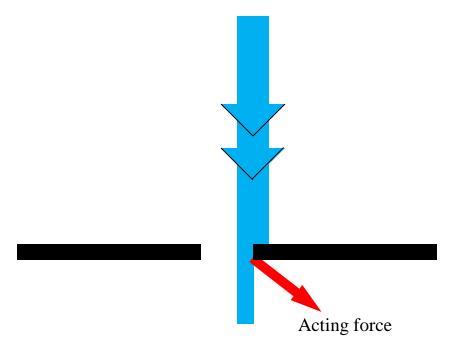
Stabilization

Restoring force



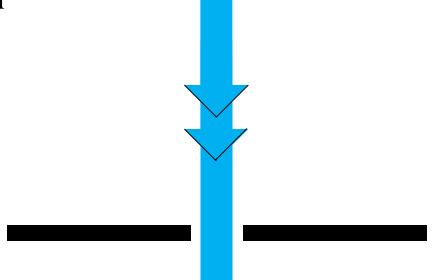
Stabilization

Restoring force

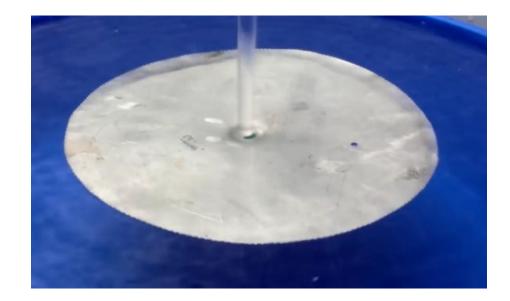


Stabilization

Optimal position

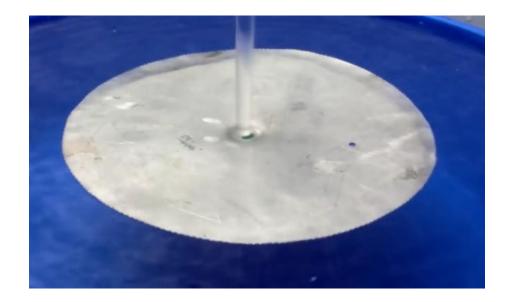


- Hydraulic jump
 - Expels water from the space above the disc
- Buoyancy force
 - Pushes the disc up
- Restoring force
 - Prevents the disc from escaping



https://www.youtube.com/watch?v=eP5_9eUjfkI

- Hydraulic jump
 - Expels water from the space above the disc
- Buoyancy force
 - Pushes the disc up
- Restoring force
 - Prevents the disc from escaping



https://www.youtube.com/watch?v=eP5_9eUjfkI